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Abstract: Isotope effect calculations (H/D and16O/18O) were carried out for a series of vibrational models containing
a double-minimum potential for a hydrogen bond. The calculations showed the maximum hydrogen isotope effects
for models in which the zero-point vibrational levels (for H) for the motion governed by the double-minimum potential
were very near the energy of the barrier for the potential. The hydrogen isotope effects also showed a strong
dependence on the energy difference between the wells of the double-minimum potential. Isotopic entropies were
calculated for the H/D isotope effects, and were found to be dependent on the height of the barrier in the potential.
Oxygen isotope effects were all inverse for reasons having little to do with the presence of double-minimum potentials
in the models. The results have implications for studies of low-barrier hydrogen bonds.

Short, low-barrier hydrogen bonds1,2 have been proposed
recently to be important in enzymic catalysis,2-4 although the
scope of the role they play has been debated.5 Outside of the
current debate about enzymic catalysis, strong hydrogen bonds
have long been considered as possible features of transition
states for acid- and base-catalyzed reactions. Catalytic protons
in transition states for certain reactions have been proposed to
lie in stable hydrogen bond potentials, in part to help explain
observations of small (near unity) kinetic isotope effects.6 The
notion of catalytic protons in stable potentials was later extended
to include cases with larger kinetic isotope effects (ca. 2-4).7
Kreevoy and Liang’s1 measurement of low isotopic fractionation
factors for hydrogen-bonded bis-carboxylate complexes in a
nonaqueous solvent helped to strengthen this conjecture. Kree-
voy and Liang used the zero-point vibrational levels of model
double-minimum potentials to explain their experimental find-
ings. Hydrogen bonds of the type studied by Kreevoy and Liang
are now called “low-barrier” hydrogen bonds.
A potential like the one shown in Figure 1 is commonly used

to present the concept of a low-barrier hydrogen bond; it also
serves here to define the barrier height (Vbarrier) and the energy
difference between the minima (∆Vmin). The curve for the
potential plotted is a convenient quartic equation, eq 1, in which

the coordinatex represents the displacement of the proton of
the hydrogen bond along the heteroatom axis of the bond.8 In
the work presented here,x is the displacement of the asymmetric
stretch of the hydrogen bond. When the parameters of the
potential are set such that the barrier for proton motion along
the hydrogen bond is low, and the distance between minima is
small, the energy of the lowest vibrational state will approach
that of the barrier height and the proton becomes highly
delocalized.
Much of the recent discussion concerning the detection and

characterization of low-barrier hydrogen bonds has focused on
the use of NMR chemical shifts.2,9 Studies of isotopic
fractionation factors for hydrogen bonds10 and the use of kinetic
isotope effects may prove to be equally useful for sorting out
the details of the potential defining the hydrogen bonds,
especially for catalytically important bonds that should be found
in transition-state structures. To aid in this effort, a method
for building vibrational models for structures containing low-
barrier hydrogen bonds, along with calculations for a model
reaction, are presented here. These models will refer to low-
barrier hydrogen bonds that exist in a transition state but are
not coupled to the reaction-coordinate motion. Thus equilibrium
isotope effects or fractionation factors can be used to describe
kinetic isotope-effect contributions arising from the presence
of low-barrier hydrogen bonds in the transition state.

X Abstract published inAdVance ACS Abstracts,January 15, 1996.
(1) (a) Kreevoy, M. M.; Liang, T. M.; Chang, K. C.J. Am. Chem. Soc.

1977, 99, 5207-5209. (b) Kreevoy, M. M.; Liang, T. M.J. Am. Chem.
Soc.1980, 102, 3315-3322.

(2) Hibbert, F.; Emsley, J.AdV. Phys. Org. Chem.1990, 26, 255-379.
(3) Cleland, W. W.Biochemistry1992, 31, 317-319.
(4) Kreevoy, M. M.; Cleland, W. W.Science1994, 264, 1887-1890.
(5) Scheiner, S.; Kar, T.J. Am. Chem. Soc.1995, 117, 6970-6975.

Warshel, A.; Papazyan, A.; Kollman, P. A.Science1995, 269, 102-103.
Cleland, W. W.; Kreevoy, M. M.Science1995, 269,104. Frey, P. A.Science
1995, 269,104-106.

(6) Swain, C. G.; Kuhn, D. A.; Schowen, R. L.J. Am. Chem. Soc.1965,
87, 1553-1561. Cordes, E. H.Prog. Phys. Org. Chem.1967, 4, 1-44.
Schowen, R. L.Prog. Phys. Org. Chem.1972, 9, 275-331.

(7) Minor, S. S.; Schowen, R. L.J. Am. Chem. Soc.1973, 95, 2279-
2281. Young, P. R.; Jencks, W. P.J. Am. Chem. Soc.1978, 100, 1228-
1235. Eliason, R.; Kreevoy, M. M.J. Am. Chem. Soc.1978, 100, 7037-
7041. Hegazi, M.; Mata-Segreda, J. F.; Schowen, R. L.J. Org. Chem.1980,
45, 307-310. Schowen, R. L.Mol. Struct. Energ.1988, 9, 119-168
(Mechanistic Principles of Enzyme Activity; Liebman, J. F., Greenberg,
A., Eds.). Gandour, R. D.; Nabulsi, N. A. R.; Fonczek, F. R.J. Am. Chem.
Soc.1990, 112, 7817-7819.

(8) Note that 1 mdyn‚Å is equivalent to an energy of 10-18 J or 50 341
cm-1.

(9) Perrin, C. L.Science1994, 266, 1665-1668. Perrin, C. L.; Thoburn,
J. D.J. Am. Chem. Soc.1992, 114, 8559-8565. Perrin, C. L.; Thoburn, J.
D. J. Am. Chem. Soc.1989, 111, 8010-8012. Frey, P. A.; Whitt, S. A.;
Tobin, J. B.Science1994, 264, 1927-1930. Golubev, N. S.; Smirnov, S.
N.; Gindin, V. A.; Denisov, G. S.; Benedict, H.; Limbach, H.-H.J. Am.
Chem. Soc.1994, 116, 12055-12056. Tong, H.; Davis, L.Biochemistry
1995, 34, 3362-3367. Tobin, J. B.; Whitt, S. A.; Cassidy, C. S.; Frey, P.
A. Biochemistry1995, 34, 6919-6924.

(10) Emsley, J.; Gold, V.; Szeto, W. T. A.J. Chem. Soc., Dalton Trans.
1986, 2641-2644. Hibdon, S. A.; Coleman, C. A.; Wang, J.; Murray, C. J.
Bioorg. Chem.1992, 20, 334-344. Loh, S.; Markley, J. L.Biochemistry
1994, 33, 1029-1036. Arrowsmith, C. H.; Guo, H. X.; Kresge, A. J.J.
Am. Chem. Soc.1994, 116, 8890-8894. Kresge, A. J.; More O’Ferrall, R.
A.; Powel, M. F. InIsotopes in Organic Chemistry; Buncel, E., Lee, C. C.,
Eds.; Elsevier: Amsterdam, 1987; Vol. 7, Chapter 4.

2V) f2x
2 + f3x

3 + f4x
4 (1)

1663J. Am. Chem. Soc.1996,118,1663-1668

0002-7863/96/1518-1663$12.00/0 © 1996 American Chemical Society



Computational Methods

Isotope effects were calculated using a modification of the standard
Bigeleisen-Wolfsberg11 method in which classical partition functions
are used to compute the contributions from translational and rotational
degrees of freedom and vibrational contributions are computed using
harmonic-oscillator partition functions for all vibrational degrees of
freedom. The standard treatment was modified by replacing the
harmonic vibrational term for asymmetric stretch involving dominant
motions from atoms O2-H1-O3 in the product model with a partition
function computed for a double-minimum potential.12

The general approach to the calculations was to first build reactant
and product harmonic vibrational models (see Figure 2) using estab-
lished procedures.13 The product model at this stage represented the
point at the top of the barrier for a double-minimum potential with
one imaginary frequency corresponding to the motion across the barrier.
In the second stage of the calculation, a vibrational partition function
for the double minimum potential was used in place of what would be
a term for the imaginary-frequency motion. The link between the
harmonic vibrational analysis and the anharmonic analysis used for
the double-minimum potential was the effective mass for the O2-
H1-O3 asymmetric stretching motion.
Harmonic Vibrational Models. Most of the geometry and force

constants for the reactant and product models are shown in Figure 1.
Fully redundant simple valence harmonic force fields were designed
for the reactant and product models based on force fields derived from
normal-coordinate analyses of methanol spectra.14 The O2-H1-O3

stretching force constants and bond distances were chosen based on
the double-minimum parameters (f2, f3, andf4) selected for a particular
calculation. The O2-O3 distance was computed from eq 2, where

roO-H is the bond length used for a unit bond order O-H bond (1.10
Å), and∆x is the distance between the minima of a double-minimum
potential. For all calculations, once a distance for O2-O3 was
determined from the double-minimum potential parameters for a product
model, the same O2-O3 distance was used for the reactant. This was
done primarily to minimize the size of rotational and translational
contributions to the isotope effects. The O-H distances in the product
were calculated from eq 3, in which∆x′ is the distance fromx ) 0

(see Figure 1) to one of the minima of the potential. Stretching force
constants for the O-H coordinates of the product were assigned using
bond orders derived from the distance in eq 3, and a Badger’s-rule15

relationship (eqs 4 and 5).FoO-H is the force constant for a unit bond
order O-H bond, and was assigned a value of 6.838 mdyn/Å to
generate reactant model O-H stretching frequencies of 3500 cm-1,
the value used by Kreevoy and Liang1b for their reference model.
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Figure 1. Description of terms used to define the double-minimum
potentials. The potential (eq 1) shown is forf4 ) 18, f3 ) 3, f2 ) -1.502
(mdyn and Å units). The energy levels are for masses obtained using
the method described in the text. In this case, for the H isotopomer the
reduced mass for the coordinate is 0.4903 amu, and for the D
isotopomer it is 0.9514 amu. Solid and dotted horizontal lines mark
respective H and D vibrational energy levels for the potential.

Figure 2. Models used for calculations of isotope effects. The positions
of isotopic substitution are noted in the figure. All C-H (1.10 Å, 4.70
mdyn/Å) and C-O (1.43 Å, 4.30 mdyn/Å) bond lengths and stretching
force constants were the same in the reactant and product models. All
bond angles were fixed at tetrahedral values in the reactant and product,
except for the linear O2-H1-O3 angle. The H-C-H bending force
constant (0.50 mdyn‚Å/rad2) and the H-C-O force constant (0.85
mdyn‚Å/rad2) were also unchanged between the reactant and product
models. The H-O-C bending force constants were 0.75 mdyn‚Å/rad2
in the reactant, and half this value in the product. Three redundant
4-atom chain torsional force constants were used for each of the C-O
torsional coordinates. In the reactant, these values were 0.00833
mdyn‚Å/rad2, and half this value in the product. The H1-O3 stretching
force constant was set to zero in the reactant, as were the O2-H1-O3
linear bending force constants in the product. The H1-O2 and H-O3
stretching constants were 6.838 mdyn/Å in the reactant. The O2-O3
distance was fixed between reactant and product as determined by the
parameters of the double-minimum hydrogen bond potential in the
product (see text). The treatment of the O-H coordinates in the product
is described in the text.

rO2-O3 ) ∆x+ 2roO-H (2)

rO-H ) ∆x′ + roO-H (3)

nO-H ) e{(roO-H-rO-H)/0.3} (4)
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A single off-diagonal force constant was included in the product
force field to couple the O-H stretches and generate an imaginary
frequency with a magnitude corresponding to the curvature at the barrier
top of a particular double-minimum potential. For the potential of eq
1, the curvature at the barrier top is simplyf2. If this is compared with
a linear triatomic asymmetric stretching force constant,16 a valence
stretch-stretch coupling constant (Fss) can be found (eq 6).

The procedures outlined above produce harmonic vibrational models
for the product that are specified by the parameters of the double-
minimum potential, and represent structures situated at the top of the
barrier for the same potential. Normal-coordinate calculations were
carried out to obtain frequencies using the Gwinn method,17 and
standard harmonic oscillator partition functions were computed using
all non-zero frequencies except for the single imaginary frequency in
the product. Partition functions for double-minimum (quartic) potentials
were incorporated into the calculation as described below.
Vibrational Analysis for Quartic Potentials. Solutions to the one-

dimensional, quartic-potential, vibrational problem were obtained using
a variational method with harmonic-oscillator basis functions.18 In all
cases, the 20 basis functions used were more than sufficient for
convergence of isotopic partition functions evaluated up to 373 K. The
necessary integrals for the method are simple analytical equations.19b

Vibrational partition functions were computed by summing the Boltz-
mann factors for the various energy levels (up to 10 000 cm-1) obtained
from the variational calculation. The masses used in the calculation
of energy levels for the quartic potentials were obtained from the
normal-coordinate treatment of the purely harmonic models.
Effective Masses from Normal-Coordinate Analysis.The effec-

tive mass for the motion in the double-minimum potential was obtained
from the internal-coordinate eigenvector for the imaginary asymmetric
stretch (O2-H1-O3) frequency. The determination of effective masses
from normal-coordinate treatments can be demonstrated in general terms
by noting that the eigenvector matrix20 in internal coordinates (L )
diagonalizes (eq 7) the internal-coordinate force-constant matrix (F).19

Thus for thekth normal coordinate, it is possible to write eq 8,

whereL k is the eigenvector (in terms of internal coordinates) for the
kth frequency. An analogy can be seen between the equation above
(eq 8) and the equation below (eq 9) for a diatomic stretch, withL k

TL k

(the squared length of the eigenvector) as the functional equivalent of
the inverse of the reduced mass (µ). The column ofL corresponding
to the motion desired for a double-minimum potential (in this case,
the imaginary asymmetric-stretching frequency) was used (asL k

TLk) to

establish an effective mass for the one-dimensional quartic vibrational
problem described above.
All calculations were carried out using a program written locally

(vibie2). A single isotope-effect calculation for the full model required
only a few seconds of time on a Silicon Graphics, Inc. Indigo2
workstation.

Results

Isotope effects calculated for the model described in Figure
2 are very sensitive to the height of the barrier within the
hydrogen bond potential. Kreevoy and Liang1b found the same
trend in hydrogen isotope effects in their simpler model which
considered only the zero-point energy levels of double-minimum
potentials. The results shown in the upper panel of Figure 3
demonstrate further that barrier height, when measured relative
to the lowest energy level for the vibration, is a particularly
good correlate of the hydrogen isotope effect. Calculations for
models with a modest range of quartic constants (f4, eq 1) are
nearly superimposable. Similar results were found for the
oxygen isotope effects (lower panel of Figure 3), but these values
were more sensitive to the choice off4. Table 1 shows the
contributions to the isotope effects from harmonic vibrational
modes (HARM) and from the vibrational mode for the anhar-
monic double-minimum potential (DM) for a few points selected
from Figure 3.
Isotopic entropy differences were also calculated for each of

the points shown in Figure 1. Figure 4 shows the results for
hydrogen isotope effects are, like the isotope effects, strongly
correlated with the barrier height measured above the zero-point
vibrational level. Isotopic entropies were obtained from the
intercepts of linear plots of ln(KH/KD) vs 1/T for isotope effects
calculated at 12 temperatures over a range of 273 to 373 K.
Figure 5 and Table 2 display results from a series of

calculations in which the difference in the minima of the
hydrogen bond potential was varied. Following the lead of
Kreevoy and Liang,1b the cubic constant (f3) of eq 1 was
gradually increased to generate an appropriate set of models.

Discussion

The results of the calculations reported here have relevance
to chemical and biochemical systems beyond the model’s

(16) Hertzberg, G.Molecular Spectra and Molecular Structure II.
Infrared and Raman Spectra of Polyatomic Molecules; D. Van Nostrand,
Inc.: Princeton, NJ, 1945; p 172.

(17) Gwinn, W. D.J. Chem. Phys.1971, 55, 477-481.
(18) Heilbronner, E.; Rtishauser, H.; Gerson, F.HelV. Chim.Acta1959,

42, 2285-2303. Chan, S. I.; Stelman, D.J. Mol. Spectrosc. 1963, 10, 278-
299. Chan, S. I.; Stelman, D.; Thompson, L. E.J. Chem. Phys.1964, 41,
2828-2835.

(19) (a) Wilson, E. B., Jr.; Decius, J. C.; Cross, P. C.Molecular
Vibrations. The Theory of Infrared and Raman Vibrational Spectra;
McGraw-Hill Book Company: New York, 1955 (Dover edition, 1980). (b)
Reference 19a, Appendix III.

(20) The Gwinn method17 used for normal-coordinate analysis provides
the eigenvectors in mass-weighted Cartesian coordinates. This matrix (Lmc)
was transformed into internal-coordinate eigenvectors using theB matrix
(relating internal and Cartesian coordinates) already built for the Gwinn
method (L ) B(ML mc), whereM is a diagonal matrix containing inverse
square roots of atomic masses).

FO-H ) FoO-HnO-H (5)

f2 ) 0.5(FO2-H1 + FO3-H1 - 2Fss) (6)

LTFL ) diag(4π2νk
2) (7)

L k
TFL k ) 4π2νk

2 (8)

F/µ ) 4π2ν2 (9)

Figure 3. Isotope effects (25°C) calculated for the model of Figure
2 displayed as a function of the difference between the double-minimum
barrier height and the lowest H energy level for the double-minimum
coordinate.
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nominal representation of a methanol dimer and hypothetical
complexes of methoxide and methanol. These structures were
chosen because they have simple geometries and they are
convenient for testing ideas about hydrogen and oxygen isotope
effects. The models could be changed and the parameters
adjusted to attempt better quantitative agreement with specific
experimental results. The results also have implications for both
equilibrium and rate studies. The model calculations here all
represent an equilibrium situation between reactant and product
states, but the hydrogen-bonded product complex could easily
be envisioned as a model for part of a transition-state structure
involving heavy-atom rearrangement along an authentic reaction
coordinate with a stable hydrogen bond as one element of the
structure.
Hydrogen Isotope Effects and Isotopic Entropies. The

hydrogen isotope effects reported in Figure 3 show a maximum
value of 3.8 at the point where the zero-point energy for the H

isotopomer equals the barrier height. As Table 1 shows, the
variability in the isotope effect arises from changes in the
vibrational levels corresponding to the double-minimum po-
tential (DM in the table). For all of the product complexes in
Figure 3 and in Table 1, the forces on either side of the hydrogen
bond proton are balanced. The harmonic symmetric stretch of
the hydrogen bond is therefore insensitive to the mass of the
proton, so nearly complete loss of the reactant-state isotopic
energy difference is seen in the harmonic contributions (HARM)
to the isotope effect.21 The effect of the double-minimum
potential is to restore isotopic vibrational energy differences to
the product complex. This effect is minimized, for the series
of potentials examined here, when the zero-point level for H is
near the barrier height. At this point, the H and D double-
minimum vibrational levels become much closer in energy than
would be expected for a harmonic potential. The same
observations were also made by Kreevoy and Liang1b in their
model calculations of isotopic fractionation factors.22 The
results of Figure 3 highlight the utility of isotope-effect
measurements in learning about hydrogen bond potentials.
More refined models for hydrogen bond potentials could be

developed in favorable cases where precise studies of the
temperature dependence of isotope effects are possible. As
Figure 4 shows, the isotopic entropy differences for the hydrogen
isotope effects are also very sensitive to the barrier height,
measured from the zero-point level of the hydrogen bond
potential. The maximum in this plot occurs not at the point
where the zero-point matches the barrier height, but instead for
the potential shown at location B in the figure. At this point,
the potential is such that the tunnel splitting of the lowest D
level generates more low-lying vibrational states than for H.
As can be seen from the potential at point B, there are four
vibrational states below 5000 cm-1 for the deuterium isoto-
pomer, but only three for the hydrogen isotopomer. In studies
of kinetic isotope effects, it is common to use an isotopic
Arrhenius equation to treat temperature effects,13a yielding
isotope effects on pre-exponential parameters (AH/AD) and
activation energies (ED - EH). The maximum isotopic entropy

(21) Westheimer, F. H.Chem. ReV. 1961, 1, 265-273. Bigeleisen, J.
Pure Appl. Chem.1964, 8, 217-233.

(22) The inverse of the isotopic fractionation factors calculated by
Kreevoy and Liang1b is equivalent in kind to theKH/KD presented here.

Table 1. Isotope Effects as a Function of Barrier Height with
∆Vmin ) 0a (See Figure 3)

KH/KD (1st line),K16,16/K18,18(2nd line)f2,
mdyn/Å

Vbarrier,
cm-1

E0,H,c
cm-1 MMI b HARMb DMb IEb

-3.000 3146 1830 1.0004 10.8787 0.1197 1.3024
0.9942 0.9269 0.9888 0.9113

-1.804 1138 1059 1.0002 10.5426 0.3416 3.6020
0.9942 0.9251 0.9933 0.9136

-1.502 789 917 1.0001 10.4376 0.3484 3.6373
0.9942 0.9245 0.9931 0.9121

-1.200 503 812 1.0000 10.3195 0.3338 3.4449
0.9942 0.9219 0.9927 0.9099

-0.600 126 738 0.9999 10.0197 0.2799 2.8045
0.9943 0.9153 0.9918 0.9026

a The quartic constant (f4) for each of double-minimum potentials
was set to 18 mdyn/Å3, and the cubic constant (f3) was zero.
Calculations refer to the model in Figure 2 for 25°C. bMMI is the
usual contribution to the isotope effect (IE) arising from classical
rotations and translations. HARM is the ratio of isotopic partition
functions for all of the harmonic vibrational modes of the model (less
the mode for the imaginary frequency corresponding to the H-bond
asymmetric stretch). DM is the ratio of isotopic partition functions
for vibrations of the double-minimum potential.c Lowest vibrational
energy level for the double-minimum potential.

Figure 4. Isotopic entropy differences calculated for the model shown
in Figure 2. Vibrational energy levels (solid) H, dashed) D) for
three double-minimum potentials in the model are shown on the plot.
The energy scale for each of the potentials plotted on the figure is
0-5000 cm-1. The barrier heights (cm-1) and f2 (eq 1, mdyn/Å) for
these potentials are the following: (A) 350,-1.00; (B) 2014,-2.40;
and (C) 4282,-3.50.

Figure 5. Hydrogen isotope effects (25°C) as a function of the energy
difference between the wells of a double-minimum potential for the
model shown in Figure 1. The zero-point energies for the light
isotopomer of the model are shown for three potentials. The energy
scale for the plots of hydrogen bond potentials is 0-4000 cm-1.
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difference in Figure 4 corresponds to anAH/AD value of 0.62.
High-precision measurements of isotope effects would be needed
to distinguish this modest deviation from a classicalAH/AD value
of near unity.23

Oxygen Isotope Effects.One of the motivations for devising
a scheme for incorporation of double-minimum potentials into
vibrational models was to learn about the possible utility of
oxygen isotope effects in distinguishing among types of
hydrogen bonds. Inspection of Table 1 reveals that the influence
of the double-minimum potential on the isotope effects is small,
but the changes that were observed as the barrier height was
adjusted are similar to what was found for the hydrogen isotope
effects. When the zero-point levels are near the barrier, the
16O and18O energies tend to move closer together than would
be expected in a harmonic potential. Coupled with studies of
hydrogen isotope effect, studies of oxygen isotope effects could
help define hydrogen bond potentials.
As Figure 3 and Table 1 show, the oxygen isotope effects

are all inverse, and the largest component of the effect is the
contribution from harmonic vibrations. The origin of the inverse
nature of the isotope effect does not lie in the formation of a
“tighter” potential in the product, but results instead from the
new kinetic coupling of the product. As the complex is formed,
high-frequency O-H stretches that are insensitive to the mass
of oxygen are replaced by new low-frequency modes that
resemble O-O stretching motions which are more sensitive to
the mass of oxygen. The isotopic vibrational energy differences
thus increase in the product complex and produce an inverse
isotope effect. The oxygen isotope effects are inverse on these
models even when there is no explicit force-field coupling
present.
Influence of ∆Vmin on Hydrogen Isotope Effects. The

hydrogen isotope effects are sensitive to the energy difference
between the minima of the hydrogen bond potential, as is seen
in Figure 5 and Table 2. This result has implications for systems
showing solvent isotope effects that are strongly dependent on
the pKa difference between reacting acids and bases.24 For
example, Bergman, Chiang, and Kresge24afound that the solvent
isotope effect on the general-acid-catalyzed reaction between
methoxylamine andp-methoxybenzaldehyde varied from 1.0

to 2.8 and back to near unit values over a pKa range of 7 units
for the general acid. The width at half-height of the peak in
the solvent isotope effect is about 4 pKa units. Yang and
Jencks24b observed a similar peak in solvent isotope effects in
plots against the pKa’s of the conjugate acids of general bases
in the aminolysis of methyl formate with aniline. Fischer et
al.24c also found similar results in the general-base-catalyzed
hydroxyaminolysis of an iminium ion. Cox and Jencks24d,e

observed a steeper dependence of solvent isotope effect on the
pKa of general acids in the reaction of methoxylamine with
phenyl acetate. In this case, the width at half-height was only
about 2 pKa units. As was noted in each of these examples,
the results were consistent with shifts in the rate-limiting step
of the reaction which allowed the extent of rate control by a
proton transfer step to vary as the pKa of one reactant was varied.
In one of the two models used to explain their results, Cox and
Jencks24e found it necessary to force a strong pKa dependence
of the intrinsic isotope effect for the proton transfer step in a
mechanism containing pKa-sensitive rate-limiting steps.
The peak in the variation of isotope effects with∆Vmin in

Figure 5 has a width at half-height of 2200 cm-1 which is
equivalent to 4.6 pKa units. Thus the “pKa” dependence of the
calculated isotope effects is not as steep as that seen by Cox
and Jencks,24d,ebut it is comparable to the other reports24a-c of
pKa-dependent solvent isotope effects. In light of the present
calculations, the explanations used previously to explain maxima
in solvent isotope effects still appear to be quite reasonable,
but they could be augmented by allowing for the possibility of
low-barrier hydrogen bonds in the transition states.
Over the range of product models giving this high variability

in the isotope effect, there is only a modest change in the bond
orders of the two O-H bonds.25 As Table 2 shows, the bond
orders are not far from 0.5 (0.36 and 0.63) when the isotope
effect is 1.4. The bond orders in Table 2 are “effective” bond
orders because they represent distances calculated using the
coordinates for the minima and maxima of the double-mimimum
potential.26 As effective bond orders, they reflect measures of
structure that might be determined from free-energy relation-
ships. These computational results support a shifting, low-

(23) It is worth recalling that unusual temperature effects in kinetic
isotope effect studies sometimes arise from temperature-induced changes
in mechanism or changes in rate-limiting step or from reaction-coordinate
tunneling. Complete elimination of these possible interpretations would be
challenging.

(24) (a) Bergman, N. A° .; Chiang, Y.; Kresge, A. J.J. Am. Chem. Soc.
1978, 100, 5954-5956. (b) Yang, C. C.; Jencks, W. P.J. Am. Chem. Soc.
1988, 110, 2972-2973. (c) Fisher, H.; DeCandis, F. X.; Ogden, S. D.;
Jencks, W. P.J. Am. Chem. Soc.1980, 102, 1340-1347. (d) Cox, M. M.;
Jencks, W. P.J. Am. Chem. Soc.1978, 100, 5956-5957. (e) Cox, M. M.;
Jencks, W. P.J. Am. Chem. Soc.1981, 103, 572-580.

(25) Note that in Table 2, the variability in the isotope effect comes
entirely from DM, the contributions from the vibrational energy levels of
the double-minimum potential. The contributions from the harmonic
vibrations are nearly constant. Part of this constancy comes from the fact
that there is only a modest change in the O-H bond orders over the series
of models used for the products. Another reason is the fact that high coupling
constants were needed to generate harmonic vibrational models that matched
the curvature at the barrier tops of double-minimum potentials (the imaginary
frequencies ranged from 2284i to 3011i cm-1 for the calculations in Table
2). In the limit of high coupling, the stable symmetric stretch frequency,
which governs the “Westheimer effect”,21 tends to become independent of
the coupling strength and modest changes in structure.

Table 2. Isotope Effects for Models Containing Potentials with Varying∆Vmina (See Figure 5)

KH/KD (1st line),K16,16/K18,18(2nd line)f3,
mdyn/Å2 Vbarrier, cm-1 E0,H,c cm-1 ∆Vmin, cm-1 MMI b HARMb DMb IEb

0.0 789 917 0 1.0001 10.4376 0.3484 3.6373
nOH ) 0.506, 0.506d 0.9942 0.9245 0.9931 0.9121

1.0 1040 1125 432 1.0001 10.4369 0.3244 3.3863
nOH ) 0.488, 0.524 0.9942 0.9238 0.9928 0.9119

2.0 1380 1328 912 1.0001 10.4281 0.2640 2.7532
nOH ) 0.434, 0.573 0.9942 0.9236 0.9923 0.9111

3.0 1838 1531 1472 1.0001 10.4173 0.1941 2.0224
nOH ) 0.398, 0.604 0.9942 0.9232 0.9913 0.9099

4.0 2453 1731 2162 1.0001 10.4034 0.1365 1.4206
nOH ) 0.363, 0.633 0.9942 0.9228 0.9902 0.9085

aCalculations are for the model in Figure 2 at 25°C with f4 ) 18 mdyn/Å3 and f2 ) -1.502 mdyn/Å.b,cRefer to footnotes of Table 1.d The
two values listed fornOH are the two O-H bond orders calculated using e{(1.1-rOH)/0.3} whererOH is the bond length in Å as determined from the
coordinates of the minima and maximum of the double-minimum potential.
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barrier, hydrogen bond mechanism as an explantion for modest-
sized kinetic isotope effects that are sensitive to pKa, in situations
where other indicators suggest modest variability in transition-
state structure.

Conclusions

Knowledge about hydrogen-bond potentials in interesting
chemical and biochemical systems could be advanced though

careful measurements of isotope effects and their dependence
on temperature. In ideal situations, experiments might be
designed such that the pKa’s of putative hydrogen-bond donor
and acceptor groups could be systematically varied. In cases
of greatest relevance to catalysis, namely systems with transition
states bearing protonic bridges, kinetic isotope effects studies
of this sort offer the most direct approach to characterizing the
hydrogen-bond potential.
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(26) If O-H and O-D bond distances are computed from the average
position determined for the wave function of each vibrational level, weighted
by the appropriate Boltzmann factor for 25°C, a separate set of bond orders
can be found for each of the model calculations in Table 2 whenf3 is
nonzero. The results of this procedure are as follows:f3 ) 1.0 mdyn/Å2,
nOH ) 0.565 and 0.450,nOD ) 0.624 and 0.408;f3 ) 2.0,nOH ) 0.627 and
0.397,nOD ) 0.729 and 0.342;f3 ) 3.0, nOH ) 0.697 and 0.345,nOD )
0.802 and 0.300;f3 ) 4.0,nOH ) 0.761 and 0.302,nOD ) 0.851 and 0.207.
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